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ABSTRACT. Extrapolation methods use the last few iterates of an optimization algorithm to produce a better
estimate of the optimum. They were shown to achieve optimal convergence rates in a deterministic setting
using simple gradient iterates. Here, we study extrapolation methods in a stochastic setting, where the iterates
are produced by either a simple or an accelerated stochastic gradient algorithm. We first derive convergence
bounds for arbitrary, potentially biased perturbations, then produce asymptotic bounds using the ratio between
the variance of the noise and the accuracy of the current point. Finally, we apply this acceleration technique
to stochastic algorithms such as SGD, SAGA, SVRG and Katyusha in different settings, and show significant
performance gains.

1. INTRODUCTION

We focus on the problem

min
x∈Rd

f(x) (1)

where f(x) is a smooth and strongly convex function with respect to the Euclidean norm. We consider a
stochastic first-order oracle, which gives a noisy estimate of the gradient of f(x), with

∇εf(x) = ∇f(x) + ε, (2)

where ε is a noise term with bounded variance. This is the case for example when f is a sum of strongly
convex functions, and we only have access to the gradient of one randomly selected function. Stochastic
optimization (2) is typically challenging as classical algorithms are not convergent (for example, gradient
descent or Nesterov’s accelerated gradient). Even the averaged version of stochastic gradient descent with
constant step size does not converge to the solution of (1), but to another point whose proximity to the real
minimizer depends of the step size [Nedić and Bertsekas, 2001; Moulines and Bach, 2011].

When f is a finite sum of N functions, then algorithms such as SAG [Schmidt et al., 2013], SAGA
[Defazio et al., 2014], SDCA [Shalev-Shwartz and Zhang, 2013] and SVRG [Johnson and Zhang, 2013]
accelerate convergence using a variance reduction technique akin to control variate in Monte-Carlo meth-
ods. Their rate of convergence depends of 1 − µ/L and thus does exhibit an accelerated rate on par with
the deterministic setting (in 1 −

√
µ/L). Recently a generic acceleration algorithm called Catalyst [Lin

et al., 2015], based on the proximal point methods improved this rate of convergence, at least in theory.
Unfortunately, numerical experiments show this algorithm to be conservative, thus limiting practical per-
formances. On the other hand, recent papers, for example [Shalev-Shwartz and Zhang, 2014] (Accelerated
SDCA) and [Allen-Zhu, 2016] (Katyusha), propose algorithms with accelerated convergence rates, if the
strong convexity parameter is given.

When f is a quadratic function then averaged SGD converges, but the rate of decay of initial conditions is
very slow. Recently, some results have focused on accelerated versions of SGD for quadratic optimization,
showing that with a two step recursion it is possible to enjoy both the optimal rate for the bias term and the
variance [Flammarion and Bach, 2015], given an estimate of the ratio between the distance to the solution
and the variance of ε.

A novel generic acceleration technique was recently proposed by Scieur et al. [2016] in the deterministic
setting. This uses iterates from a slow algorithm to extrapolate estimates of the solution with asymptotically
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optimal convergence rate. Moreover, this rate is reached without prior knowledge of the strong convexity
constant, whose online estimation is still a challenge, even in the deterministic case [Fercoq and Qu, 2016].

Convergence bounds are derived by Scieur et al. [2016], tracking the difference between the deterministic
first-order oracle of (1) and iterates from a linearized model. The main contribution of this paper is to extend
the analysis to arbitrary perturbations, including stochastic ones, and to present numerical results when this
acceleration method is used to speed up stochastic optimization algorithms.

In Section 2 we recall the extrapolation algorithm, and quickly summarize its main convergence bounds
in Section 3. In Section 4, we consider a stochastic oracle and analyze its asymptotic convergence in Section
5. Finally, in Section 6 we describe numerical experiments which confirm the theoretical bounds and show
the practical efficiency of this acceleration.

2. REGULARIZED NONLINEAR ACCELERATION

Consider the optimization problem
min
x∈Rd

f(x)

where f(x) is a L−smooth and µ−strongly convex function [Nesterov, 2013]. Applying the fixed-step
gradient method to this problem yields the following iterates

x̃t+1 = x̃t −
1

L
∇f(x̃t). (3)

Let x∗ be the unique optimal point, this algorithm is proved to converge with

‖x̃t − x∗‖ ≤ (1− κ)t‖x̃0 − x∗‖ (4)

where ‖ · ‖ stands for the `2 norm and κ = µ/L ∈ [0, 1[ is the (inverse of the) condition number of
f [Nesterov, 2013]. Using a two-step recurrence, the accelerated gradient descent by Nesterov [2013]
achieves an improved convergence rate

‖x̃t − x∗‖ ≤ O
(

(1−
√
κ)t‖x̃0 − x∗‖

)
. (5)

Indeed, (5) converges faster than (4) but the accelerated algorithm requires the knowledge of µ and L.
Extrapolation techniques however obtain a similar convergence rate, but do not need estimates of the param-
eters µ and L. The idea is based on the comparison between the process followed by x̃i with a linearized
model around the optimum, written

xt+1 = xt −
1

L

(
∇f(x∗) +∇2f(x∗)(xt − x∗)

)
, x0 = x̃0.

which can be rewritten as

xt+1 − x∗ =
(
I− 1

L
∇2f(x∗)

)
(xt − x∗), x0 = x̃0. (6)

A better estimate of the optimum in (6) can be obtained by forming a linear combination of the iterates (see
[Anderson, 1965; Cabay and Jackson, 1976; Mešina, 1977]), with∥∥∥ t∑

i=0

cixi − x∗
∥∥∥� ‖xt − x∗‖,

for some specific ci (either data driven, or derived from Chebyshev polynomials). These procedures were
limited to quadratic functions only, i.e. when x̃i = xi but this was recently extended to generic convex
problems by Scieur et al. [2016] and we briefly recall these results below.

To simplify the notations, we define the function g(x) and the step

x̃t+1 = g(x̃t), (7)
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where g(x) is differentiable, Lipchitz-continuous with constant (1 − κ) < 1, g(x∗) = x∗ and g′(x∗) is
symmetric. For example, the gradient method (3) matches exactly this definition with g(x) = x−∇f(x)/L.
Running k steps of (7) produces a sequence {x̃0, ..., x̃k}, which we extrapolate using Algorithm 1 from
Scieur et al. [2016].

Algorithm 1 Regularized Nonlinear Acceleration (RNA)

Input: Iterates x̃0, x̃1, ..., x̃k+1 ∈ Rd produced by (7), and a regularization parameter λ > 0.
1: Compute R̃ = [r̃0, ..., r̃k], where r̃i = x̃i+1 − x̃i is the ith residue.
2: Solve

c̃λ = argmin
cT 1=1

‖R̃c‖2 + λ‖c‖2,

or equivalently solve (R̃T R̃+ λI)z = 1 then set c̃λ = z/1T z.
Output: Approximation of x∗ computed as

∑k
i=0 c̃

λ
i x̃i

For a good choice of λ, the output of Algorithm (1) is a much better estimate of the optimum than x̃k+1

(or any other points of the sequence). Using a simple grid search on a few values of λ is usually sufficient
to improve convergence (see [Scieur et al., 2016] for more details).

3. CONVERGENCE OF REGULARIZED NONLINEAR ACCELERATION

We quickly summarize the argument behind the convergence of Algorithm (1). The theoretical bound
compare x̃i to the iterates produced by the linearized model

xt+1 = x∗ +∇g(x∗)(xt − x∗), x0 = x̃0. (8)

We write cλ the coefficients computed by Algorithm (1) from the “linearized” sequence {x0, ..., xk+1}
and the error term can be decomposed into three parts,∥∥∥ k∑

i=0

c̃λi x̃i − x∗
∥∥∥ ≤ ∥∥∥ k∑

i=0

cλi xi − x∗
∥∥∥︸ ︷︷ ︸

Acceleration

+
∥∥∥ k∑
i=0

(
c̃λi − cλi

)
(xi − x∗)

∥∥∥︸ ︷︷ ︸
Stability

+
∥∥∥ k∑
i=0

c̃λi

(
x̃i − xi

)∥∥∥︸ ︷︷ ︸
Nonlinearity

. (9)

Convergence is guaranteed as long as the errors (x̃i−x∗) and (xi− x̃i) converge to zero fast enough, which
ensures a good rate of decay for the regularization parameter λ, leading to an asymptotic rate equivalent to
the accelerated rate in (5).

The stability term (in c̃λ − cλ) is bounded using the perturbation matrix

P , RTR− R̃T R̃ (10)

where R and R̃ are the matrices of residuals,

R , [r0...rk] rt = xt+1 − xt, (11)

R̃ , [r̃0...r̃k] r̃t = x̃t+1 − x̃t. (12)

The proofs of the following propositions were obtained by Scieur et al. [2016].

Proposition 3.1 (Stability). Let ∆cλ = c̃λ − cλ be the gap between the coefficients computed by Algo-
rithm (1) using the sequences {x̃i} and {xi} with regularization parameter λ. Let P = RTR − R̃T R̃ be
defined in (10), (11) and (12). Then

‖∆cλ‖ ≤ ‖P‖
λ
‖cλ‖. (13)
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This implies that the stability term is bounded by∥∥∥ k∑
i=0

∆cλi (xi − x∗)
∥∥∥ ≤ ‖P‖

λ
‖cλ‖O(x0 − x∗). (14)

The term Nonlinearity is bounded by the norm of the coefficients c̃λ (controlled thanks to the regulariza-
tion parameter) times the norm of the noise matrix

E = [x0 − x̃0, x1 − x̃1, ..., xk − x̃k]. (15)

Proposition 3.2 (Nonlinearity). Let c̃λ be computed by Algorithm 1 using the sequence {x̃0, ..., x̃k+1} with
regularization parameter λ and R̃ be defined in (12). The norm of c̃λ is bounded by

‖c̃λ‖ ≤

√
‖R̃‖2 + λ

(k + 1)λ
≤ 1√

k + 1

√
1 +
‖R̃‖2
λ

. (16)

This bounds the nonlinearity term because

∥∥∥ k∑
i=0

c̃λi (x̃i − xi)
∥∥∥ ≤

√
1 +
‖R̃‖2
λ

‖E‖√
k + 1

, (17)

where E is defined in (15).

These two propositions show that the regularization in Algorithm 1 limits the impact of the noise: the
higher λ is, the smaller these terms are. It remains to control the acceleration term. We introduce the
normalized regularization value λ̄, written

λ̄ ,
λ

‖x0 − x∗‖2
. (18)

For small λ̄, this term decreases as fast as the accelerated rate (5), as shown in the following proposition.

Proposition 3.3 (Acceleration). Let Pk be the subspace of polynomials of degree at most k and Sκ(k, α) be
the solution of the Regularized Chebychev Polynomial problem,

Sκ(k, α) , min
p∈Pk

max
x∈[0,1−κ]

p2(x) + α‖p‖2 s.t. p(1) = 1. (19)

Let λ̄ be the normalized value of lambda defined in (18). The acceleration term is bounded by∥∥∥ k∑
i=0

cλi xi − x∗
∥∥∥ ≤ 1

κ

√
Sκ(k, λ̄)‖x0 − x∗‖2 − λ‖cλ‖2. (20)

We also get the following corollary, which will be useful for the asymptotic analysis of the rate of con-
vergence of Algorithm 1.

Corollary 3.4. If λ→ 0, the bound (20) becomes∥∥∥ k∑
i=0

cλi xi − x∗
∥∥∥ ≤ (1−

√
κ

1 +
√
κ

)k
‖x0 − x∗‖.

These last results controlling stability, nonlinearity and acceleration are proved by Scieur et al. [2016].
We now refine the final step of Scieur et al. [2016] to produce a global bound on the error that will allow us
to extend these results to the stochastic setting in the next sections.
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Theorem 3.5. If Algorithm 1 is applied to the sequence x̃i with regularization parameter λ, it converges
with rate ∥∥∥∥∥

k∑
i=0

c̃λi x̃i

∥∥∥∥∥ ≤ ‖x0 − x∗‖Sκ(k, λ̄)

√
1

κ2
+
O(‖x− x∗‖2)‖P‖2

λ3
+
‖E‖√
k + 1

√
1 +
‖R̃‖2
λ

. (21)

Proof. The proof is inspired by Scieur et al. [2016] and is also very similar to the proof of Proposition 5.2.
We can bound (9) using (14) (Stability), (17) (Nonlinearity) and (20) (Acceleration). It remains to maximize
over the value of ‖cλ‖ using the result of Proposition 8.2.

This last bound is not very explicit, but an asymptotic analysis simplifies it considerably. The next new
proposition shows that when x0 is close to x∗, then extrapolation converges as fast as in (5) in some cases.

Proposition 3.6. Assume ‖R̃‖ = O(‖x0− x∗‖), ‖E‖ = O(‖x0− x∗‖2) and ‖P‖ = O(‖x0− x∗‖3), which
is satisfied when fixed-step gradient method is applied on a twice differentiable, smooth and strongly convex
function with Lipchitz-continuous Hessian. If we chose λ = O(‖x0 − x∗‖s) with s ∈ [2, 83 ] then the bound
(21) becomes

lim
‖x0−x∗‖→0

‖
∑k

i=0 c̃
λ
i x̃i‖

‖x0 − x∗‖
≤ 1

κ

(
1− κ
1 + κ

)k
.

Proof. The proof is based on the fact that λ decreases slowly enough to ensure that the Stability and Non-
linearity terms vanish over time, but fast enough to have λ̄→ 0. If λ = ‖x0 − x∗‖s, equation (21) becomes∥∥∥∑k

i=0 c̃
λ
i x̃i

∥∥∥
‖x0 − x∗‖

≤ Sκ(k, ‖x0 − x∗‖s−2)

√
1

κ2
+

O(1)‖P‖2
‖x0 − x∗‖3s−2

+
‖E‖

‖x0 − x∗‖
√
k + 1

√
1 +

‖R̃‖2
‖x0 − x∗‖s

.

By assumption on ‖R̃‖, ‖E‖ and ‖P‖, the previous bound becomes∥∥∥∑k
i=0 c̃

λ
i x̃i

∥∥∥
‖x0 − x∗‖

≤ Sκ(k, ‖x0 − x∗‖s−2)
√

1

κ2
+O(‖x0 − x∗‖8−3s) +O

(√
‖x0 − x∗‖2 + ‖x0 − x∗‖4−s

)
.

Because λ ∈]2, 83 [, all exponents of ‖x0 − x∗‖ are positive. By consequence, when

lim
‖x0−x∗‖→0

∥∥∥∑k
i=0 c̃

λ
i x̃i

∥∥∥
‖x0 − x∗‖

≤ 1

κ
Sκ(k, 0).

Finally, the desired result is obtained by using Corollary 3.4.

The efficiency of Algorithm 1 is thus ensured by two conditions. First, we need to be able to bound ‖R̃‖,
‖P‖ and ‖E‖ by decreasing quantities. Second, we have to find a proper rate of decay for λ and λ̄ such that
the stability and nonlinearity terms go to zero when perturbations also go to zero. If these two conditions
are met, then the accelerated rate in Proposition 3.6 holds.

4. NONLINEAR AND NOISY UPDATES

In (7) we defined g(x) to be non linear, which generates a sequence x̃i. We now consider noisy iterates

x̃t+1 = g(x̃t) + ηt+1 (22)

where ηt is a stochastic noise. To simplify notations, we write (22) as

x̃t+1 = x∗ +G(x̃t − x∗) + εt+1, (23)

where εt is a stochastic noise (potentially correlated with the iterates xi) with bounded mean νt, ‖νt‖ ≤ ν
and bounded covariance Σt � (σ2/d)I . We also assume 0 � G � (1 − κ)I and G symmetric. For
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example, (23) can be linked to (22) if we set εt = ηt +O(‖x̃t−x∗‖2). This corresponds to the combination
of the noise ηt+1 with the Taylor remainder of g(x) around x∗.

The recursion (23) is also valid when we apply the stochastic gradient method to the quadratic problem

min
x

1

2
‖Ax− b‖2.

This correspond to (23) with G = I − hATA and mean ν = 0. For the theoretical results, we will compare
x̃t with their noiseless counterpart to control convergence,

xt+1 = x∗ +G(xt − x∗), x0 = x̃0. (24)

5. CONVERGENCE ANALYSIS WHEN ACCELERATING STOCHASTIC ALGORITHMS

We will control convergence in expectation. Bound (9) now becomes

E

[∥∥∥ k∑
i=0

c̃λi x̃i − x∗
∥∥∥] ≤ ∥∥∥ k∑

i=0

cλi xi − x∗
∥∥∥+O(‖x0 − x∗‖)E

[
‖∆cλ‖

]
+ E

[
‖c̃λ‖‖E‖

]
. (25)

We now need to enforce bounds (14), (17) and (20) in expectation. For simplicity, we will omit all constants
in what follows.

Proposition 5.1. Consider the sequences xi and x̃i generated by (22) and (24). Then,

E[‖R̃‖] ≤ O(‖x0 − x∗‖) +O(ν + σ) (26)
E[‖E‖] ≤ O(ν + σ) (27)

E[‖P‖] ≤ O((σ + ν)‖x0 − x∗‖) +O((ν + σ)2). (28)

Proof. First, we have to form the matrices R̃, E and P . We begin with E , defined in (15). Indeed,

Ei = xi − x̃i ⇒ E1 = ε1,

E2 = ε2 +Gε1,

Ek =

k∑
i=1

Gk−iεi.

It means that each ‖Ei‖ = O(‖εi‖). By using (33),

E‖E‖ ≤
∑
i

E‖Ei‖

≤
∑
i

E‖Ei − νi‖+ ‖νi‖

≤ O(ν + σ)

For R̃, we notice that

R̃t = x̃t+1 − x̃t,
= Rt + Et+1 − Et

We get (26) by splitting the norm,

E[‖R̃‖] ≤ ‖R‖+O(‖E‖) ≤ O(‖x0 − x∗‖) +O (ν + σ) .

Finally, by definition of P ,
‖P‖ ≤ 2‖E‖‖R‖+ ‖E‖2.
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Taking the expectation leads to the desired result,

E[‖P‖] ≤ 2E[‖E‖‖R‖] + E[‖E‖2],
≤ 2‖R‖E[‖E‖] + E[‖E‖2F ],

≤ O (‖x0 − x∗‖(σ + ν)) +O
(
(σ + ν)2

)
.

We define the following stochastic condition number

τ ,
ν + σ

‖x0 − x∗‖
.

The Proposition 5.2 gives the result when injecting these bounds in (25).

Proposition 5.2. The accuracy of extrapolation Algorithm 1 applied to the sequence {x̃0, ..., x̃k} generated
by (22) is bounded by

E
[
‖
∑k

i=0 c̃
λ
i x̃i − x∗‖

]
‖x0 − x∗‖

≤

(
Sκ(k, λ̄)

√
1

κ2
+
O(τ2(1 + τ)2)

λ̄3
+O

(√
τ2 +

τ2(1 + τ2)

λ̄

))
. (29)

Proof. We start with (25), then we use (13)

∥∥∥ k∑
i=0

cλi xi − x∗
∥∥∥+O(‖x0 − x∗‖)E

[
‖∆cλ‖

]
+ E

[
‖c̃λ‖‖E‖

]
,

≤
∥∥∥ k∑
i=0

cλi xi − x∗
∥∥∥+O(‖x0 − x∗‖)

‖cλ‖
λ

E
[
‖P‖

]
+

√
E
[
‖c̃λ‖2

]
E
[
‖E‖2

]
.

The first term can be bounded by (20),

∥∥∥ k∑
i=0

cλi xi − x∗
∥∥∥ ≤ 1

κ

√
Sκ(k, λ̄)‖x0 − x∗‖2 − λ‖cλ‖2.

We combine this bound with the second term by maximizing over ‖cλ‖. The optimal value is given in (34),

∥∥∥ k∑
i=0

cλi xi − x∗
∥∥∥+O(‖x0 − x∗‖)

‖cλ‖
λ

E
[
‖P‖

]
≤ ‖x0 − x∗‖Sκ(k, λ̄)

√
1

κ2
+
O(‖x− x∗‖2)E[‖P‖]2

λ3
,

where λ̄ = λ/‖x0 − x∗‖2. Since, by Proposition 5.1,

E[‖P‖]2 ≤ O
(

(ν + σ)2 (‖x0 − x∗‖+ ν + σ)2
)
,

we have

‖
k∑
i=0

cλi xi − x∗‖+O(‖x0 − x∗‖)
‖cλ‖
λ

E
[
‖P‖

]
≤ ‖x0 − x∗‖Sκ(k, λ̄)

√
1

κ2
+
O(‖x− x∗‖2(ν + σ)2)(‖x0 − x∗‖+ ν + σ)2

λ3
. (30)
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The last term can be bounded using (16),√
E
[
‖cλ‖2

]
E
[
‖E‖2

]
≤ O

(( k∑
i=0

‖E‖2iE
[
‖c̃λ‖2

])1/2)
≤ O

(
(ν + σ)

√
E
[
‖c̃λ‖2

])
≤ O

(
(ν + σ)

√
E
[
1 +
‖R̃‖2
λ

])
≤ O

(
(ν + σ)

√
1 +

E
[
‖R̃‖2F

]
λ

)
However,

E
[
‖R̃‖2F

]
=

∑k
i=0 E

[
‖r̃i‖2

]
=

∑k
i=0 ‖ri‖2 + E

[
rTi Ei + ‖Ei‖2

]
≤ O

(
‖x0 − x∗‖2 + (ν + σ)‖x0 − x∗‖+ (ν + σ)2

)
≤ O

(
‖x0 − x∗‖+ (ν + σ))2

)
Finally, √

E
[
‖cλ‖2

]
E
[
‖E‖2

]
≤ O

(
(ν + σ)

√
1 +

(‖x0 − x∗‖+ (ν + σ))2

λ

)
(31)

We get (29) by summing (30) and (31), then by replace all ν+σ
‖x0−x∗‖ by τ and λ

‖x0−x∗‖2 by λ̄.

Consider a situation where τ is small, e.g. when using stochastic gradient descent with fixed step-size,
with x0 far from x∗. The following proposition details the dependence between λ̄ and τ ensuring the upper
convergence bound remains stable when τ goes to zero.

Proposition 5.3. When τ → 0, if λ̄ = Θ(τ s) with s ∈]0, 23 [, we have the accelerated rate

E
[∥∥∥ k∑

i=0

c̃λi x̃i − x∗
∥∥∥] ≤ 1

κ

(
1−
√
κ

1 +
√
κ

)k
‖x0 − x∗‖. (32)

Moreover, if λ→∞, we recover the averaged gradient,

E
[∥∥∥ k∑

i=0

c̃λi x̃i − x∗
∥∥∥] = E

[∥∥∥ 1

k + 1

k∑
i=0

x̃i − x∗
∥∥∥].

Proof. Let λ̄ = Θ(τ s), using (29) we have

E
[∥∥∥ k∑

i=0

c̃λi x̃i − x∗
∥∥∥] ≤ ‖x0 − x∗‖Sκ(k, τ s)

√
1

κ2
O(τ2−3s(1 + τ)2)

+‖x0 − x∗‖O(
√
τ2 + τ2−3s(1 + τ2)).

Because s ∈]0, 23 [, means 2− 3s > 0, thus limτ→0 τ
2−3s = 0. The limits when τ → 0 is thus exactly (32).

If λ→∞, we have also

lim
λ→∞

c̃λ = lim
λ→∞

argmin
c:1T c=1

‖R̃c‖+ λ‖c‖2 = argmin
c:1T c=1

‖c‖2 =
1

k + 1

which yields the desired result.
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Proposition 5.3 shows that Algorithm 1 is thus asymptotically optimal provided λ is well chosen because
it recovers the accelerated rate for smooth and strongly convex functions when the perturbations goes to
zero. Moreover, we recover Proposition 3.6 when εt is the Taylor remainder, i.e. with ν = O(‖x0 − x∗‖2)
and σ = 0, which matches the deterministic results.

Algorithm 1 is particularly efficient when combined with a restart scheme [Scieur et al., 2016]. From a
theoretical point of view, the acceleration peak arises for small values of k. Empirically, the improvement is
usually more important at the beginning, i.e. when k is small. Finally, the algorithmic complexity isO(k2d),
which is linear in the problem dimension when k remains bounded.

The benefits of extrapolation are limited in a regime where the noise dominates. However, when τ is
relatively small then we can expect a significant speedup. This condition is satisfied in many cases, for
example at the initial phase of the stochastic gradient descent or when optimizing a sum of functions with
variance reduction techniques, such as SAGA or SVRG.

6. NUMERICAL EXPERIMENTS

6.1. Stochastic gradient descent. We want to solve the least-square problem

min
x∈Rd

F (x) =
1

2
‖Ax− b‖2

where ATA satisfies µI � (ATA) � LI . To solve this problem, we have access to the stochastic first-order
oracle

∇εF (x) = ∇F (x) + ε,

where ε is a zero-mean noise of covariance matrix Σ � σ2

d I. We will compare several methods.

• SGD. Fixed step-size, xt+1 = xt − 1
L∇εF (xt).

• Averaged SGD. Iterate xk is the mean of the k first iterations of SGD.
• AccSGD. The optimal two-step algorithm in Flammarion and Bach [2015], with optimal parameters

(this implies ‖x0 − x∗‖ and σ are known exactly).
• RNA+SGD. The regularized nonlinear acceleration Algorithm 1 applied to a sequence of k iterates

of SGD, with k = 10 and λ = ‖R̃T R̃‖/10−6.
By Proposition 5.2, we know that RNA+SGD will not converge to arbitrary precision because the noise

is additive with a non-vanishing variance. However, Proposition 5.3 predicts an improvement of the con-
vergence at the beginning of the process. We illustrate this behavior in Figure 3. We clearly see that at
the beginning, the performances of RNA+SGD is comparable to that of the optimal accelerated algorithm.
However, because of the restart strategy, in the regime where the level of noise becomes more important the
acceleration becomes less effective and finally the convergence stalls, as for SGD. Of course, for practical
purposes, the first regime is the most important because it effectively minimizes the generalization error
[Défossez and Bach, 2015; Jain et al., 2016].

6.2. Finite sums of functions. We focus on the composite problem minx∈Rd F (x) =
∑N

i=1
1
N fi(x) +

µ
2‖x‖

2, where fi are convex and L-smooth functions and µ is the regularization parameter. We will use
classical methods for minimizing F (x) such as SGD (with fixed step size), SAGA [Defazio et al., 2014],
SVRG [Johnson and Zhang, 2013], and also the accelerated algorithm Katyusha [Allen-Zhu, 2016]. We
will compare their performances with and without the (potential) acceleration provided by Algorithm 1 with
restart each k iteration. The parameter λ is found by a grid search of size k, the size of the input sequence,
but it adds only one data pass at each extrapolation. Actually, the grid search can be faster if we approximate
F (x) with fewer samples, but we choose to present Algorithm 1 in its simplest version. We set k = 10 for
all the experiments.

In order to balance the complexity of the extrapolation algorithm and the optimization method we wait
several data queries before adding the current point (the “snapshot”) of the method to the sequence. Indeed,
the extrapolation algorithm has a complexity of O(k2d) +O(N) (computing the coefficients c̃λ and the grid

9
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FIGURE 1. *
Left: σ = 10, κ = 10−2. Center: σ = 1000, κ = 10−2. Right: σ = 1000, κ = 10−6.
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FIGURE 2. *
Left: σ = 10, κ = 1/d. Center: σ = 100, κ = 1/d. Right: σ = 1000, κ = 1/d.

FIGURE 3. Comparison of performances between SGD, averaged SGD, Accelerated SGD
[Flammarion and Bach, 2015] and RNA+SGD. We tested the performances on a matrix
ATA of size d = 500, with (top) random eigenvalues between κ and 1 and (bottom)
decaying eigenvalues from 1 to 1/d. We start at ‖x0 − x∗‖ = 104, where x0 and x∗ are
generated randomly.

search over λ). If we wait at least O(N) updates, then the extrapolation method is of the same order of
complexity as the optimization algorithm.

• SGD. We add the current point after N data queries (i.e. one epoch) and k snapshots of SGD cost
kN data queries.
• SAGA. We compute the gradient table exactly, then we add a new point after N queries, and k

snapshots of SAGA cost (k+ 1)N queries. Since we optimize a sum of quadratic or logistic losses,
we used the version of SAGA which stores O(N) scalars.
• SVRG. We compute the gradient exactly, then perform N queries (the inner-loop of SVRG), and k

snapshots of SVRG cost 2kN queries.
• Katyusha. We compute the gradient exactly, then perform 4N gradient calls (the inner-loop of

Katyusha), and k snapshots of Katyusha cost 3kN queries.

We compare these various methods for solving least-square regression and logistic regression on several
datasets (Table 1), with several condition numbers κ: well (κ = 100/N ), moderately (κ = 1/N ) and badly
(κ = 1/100N ) conditioned. In this section, we present the numerical results on Sid (Sido0 dataset, where
N = 12678 and d = 4932) with bad conditioning, see Figure 4. The other experiments are highlighted in
the supplementary material.
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FIGURE 4. Optimization of quadratic loss (Top) and logistic loss (Bottom) with several
algorithms, using the Sid dataset with bad conditioning. The experiments are done in
Matlab. Left: Error vs epoch number. Right: Error vs time.

In Figure 4, we clearly see that both SGD and AccSGD do not converge. This is mainly due to the fact
that we do not average the points. In any case, except for quadratic problems, the averaged version of SGD
does not converge to the minimum of F with arbitrary precision.

We also notice that Algorithm 1 is unable to accelerate Katyusha. This issue was already raised by
Scieur et al. [2016]: when the algorithm has a momentum term (like the Nesterov’s method), the underlying
dynamical system is harder to extrapolate.

Because the iterates of SAGA and SVRG have low variance, their accelerated version converges faster
to the optimum, and their performances are then comparable to Katyusha. In our experiments, Katyusha
was faster than AccSAGA only once, when solving a least square problem on Sido0 with a bad condition
number. Recall however that the acceleration Algorithm 1 does not require the specification of the strong
convexity parameter, unlike Katyusha.
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8. APPENDIX

8.1. Missing propositions.

Proposition 8.1. Let E be a matrix formed by [ε1, ε2, ..., εk], where εi has mean ‖νi‖ ≤ ν and variance
Σi � σI. By triangle inequality then Jensen’s inequality, we have

E[‖E‖2] ≤
k∑
i=0

E[‖εi‖] ≤
k∑
i=0

√
E[‖εi‖2] ≤ O(ν + σ). (33)

Proposition 8.2. Consider the function

f(x) =
1

κ

√
a− λx2 + bx

defined for x ∈ [0,
√
a/λ]. The its maximal value is attained at

xopt =
b
√
a√

λ2

κ2
+ λb2

,

and its maximal value is thus, if xopt ∈ [0,
√
a/λ],

fmax =
√
a

√
1

κ2
+
b2

λ
. (34)

Proof. The (positive) root of the derivative of f follows

b
√
a− λx2 − 1

κ
λx = 0 ⇔ x =

b
√
a√

λ2

κ2
+ λb2

.

If we inject the solution in our function, we obtain its maximal value,

1

κ

√√√√√a− λ

 b
√
a√

λ2

κ2
+ λb2

2

+ b
b
√
a√

λ2

κ2
+ λb2

=
1

κ

√
a− λ b2a

λ2

κ2
+ λb2

+ b
b
√
a√

λ2

κ2
+ λb2

,

=
1

κ

√
a− λ b2a

λ2

κ2
+ λb2

+ b
b
√
a√

λ2

κ2
+ λb2

,

=
1

κ

√√√√ aλ2 1
κ2

λ2

κ2
+ λb2

+ b
b
√
a√

λ2

κ2
+ λb2

,

=
√
a

1
κ2
λ+ b2√
λ2

κ2
+ λb2

,

=

√
a

λ

√
λ2

κ2
+ λb2.

The simplification with λ in the last equality concludes the proof.
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8.2. Additional numerical experiments.
8.2.1. Legend.

SAGA Sgd SVRG Katyusha AccSAGA AccSgd AccSVRG AccKat.

8.2.2. datasets.

Sonar UCI (Son) Madelon UCI (Mad) Random (Ran) Sido0 (Sid)
# samples N 208 2000 4000 12678
Dimension d 60 500 1500 4932

TABLE 1. Datasets used in the experiments.
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8.2.3. Quadratic loss.
Sonar dataset.
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FIGURE 5. Quadratic loss with (top to bottom) good, moderate and bad conditioning using
Son dataset.
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Madelon dataset.
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FIGURE 6. Quadratic loss with (top to bottom) good, moderate and bad conditioning using
Mad dataset.
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Random dataset.
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FIGURE 7. Quadratic loss with (top to bottom) good, moderate and bad conditioning using
Ran dataset.
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Sido0 dataset.
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FIGURE 8. Quadratic loss with (top to bottom) good, moderate and bad conditioning using
Sid dataset.
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8.2.4. Logistic loss.
Sonar dataset.
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FIGURE 9. Logistic loss with (top to bottom) good, moderate and bad conditioning using
Son dataset.
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Madelon dataset.
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FIGURE 10. Logistic loss with (top to bottom) good, moderate and bad conditioning using
Mad dataset.
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Random dataset.
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FIGURE 11. Logistic loss with (top to bottom) good, moderate and bad conditioning using
Ran dataset.
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Sido0 dataset.
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FIGURE 12. Logistic loss with (top to bottom) good, moderate and bad conditioning using
Sid dataset.
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Nedić, A. and Bertsekas, D. [2001], Convergence rate of incremental subgradient algorithms, in ‘Stochastic optimiza-
tion: algorithms and applications’, Springer, pp. 223–264.

Nesterov, Y. [1983], A method of solving a convex programming problem with convergence rate o (1/k2), in ‘Soviet
Mathematics Doklady’, Vol. 27, pp. 372–376.

Nesterov, Y. [2013], Introductory lectures on convex optimization: A basic course, Vol. 87, Springer Science & Busi-
ness Media.

Schmidt, M., Le Roux, N. and Bach, F. [2013], ‘Minimizing finite sums with the stochastic average gradient’, Mathe-
matical Programming pp. 1–30.

Scieur, D., d’Aspremont, A. and Bach, F. [2016], Regularized nonlinear acceleration, in ‘Advances In Neural Infor-
mation Processing Systems’, pp. 712–720.

Shalev-Shwartz, S. and Zhang, T. [2013], ‘Stochastic dual coordinate ascent methods for regularized loss minimiza-
tion’, Journal of Machine Learning Research 14(Feb), 567–599.

Shalev-Shwartz, S. and Zhang, T. [2014], Accelerated proximal stochastic dual coordinate ascent for regularized loss
minimization., in ‘ICML’, pp. 64–72.

INRIA & D.I.,
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